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Abstract—Four machine learning algorithms were prototyped MiT impact model. While this is appropriate for the purpose
and evaluated for use in a proposed decision support tool of that research, it is unclear how well the Evans et al. MiT
that would assist air wraffic managers as they set Miles-in- ) ,qe| predicts actual MiT restriction values. Furthermaine
Trail restrictions. The tool would display probabilities that each - . . .
possible Miles-in-Trail value should be used in a given sitation. Evans et.al' model is not suited to real-time decision Suppor
The a|gorithms were evaluated with an expected Miles-in-Tail because It makeS use Of future da.ta that WOUld not be a\ﬂ"abl
cost that assumes traffic managers set restrictions based onto traffic managers when they are setting MIT restrictions.
the tool-suggested probabilities. Basic Support Vector Mehine,  Finally, a variety of machine learning techniques not eatsid
random forest, and decision tree algorithms were evaluatedas in the development of the Evans et al. model have proven

was a softmax regression algorithm that was modified to exgitly X . .
reduce the expected Miles-in-Trail cost. The algorithms we useful for other air traffic management research, as destrib

evaluated with data from the summer of 2011 for air traffic N Section I, and might also be helpful for estimating MiT
flows bound to the Newark Liberty International Airport (EWR ) restrictions.

over the ARD, PENNS, and SHAFF fixes. The algorithms were  The objective of this project is to prototype and investgat
provided with 18 input features that describe the weather at algorithms that could be used in a tool to assist traffic

EWR, the runway configuration at EWR, the scheduled traffic . . . .
demand at EWR and the fixes, and other traffic management Managers bY estimating what MlT_restr!ctlpns should be put
initiatives in place at EWR. Features describing other trafic N place. This tool would not predict MiT in the future but
management initiatives at EWR and the weather at EWR rather estimate what MiT should be used now based on current
achieved relatively high information gain scores, indicang that  conditions. Based on discussions with a traffic manager who
they are the most useful for estimating Miles-in-Trail. In spite  gats MT restrictions in airspace near New York City, we
of a high variance or “over-fitting” problem, the decision tree . .
algorithm achieved the lowest expected Miles-in-Trail cds when ~PrOPOSE a tool that pregents _the traffic manager W't_h the
the algorithms were evaluated using 10-fold cross validatin with ~ Probability that each possible MiT value should be used & th
the summer 2011 data for these air traffic flows. current conditions. A sample of the type of information that
Keywords— Miles-in-Trail; machine learning would be displayed to traffic managers is shown in Table I.
By assigning a high probability to an MiT value, the tool
could indicate that it is very likely that this MiT value sHdu
Miles-in-trail (MiT) restrictions require that flights inf'ow be used in the current conditions. By assigning no single
of air traffic crossing a certain point must be separated IiT value a high probability and instead assigning several
a certain number of miles. These restrictions are one wBiT values roughly the same lower probability value, theltoo
that the volume of air traffic in airspace and at airports isould indicate that it is not clear which of these MIT values
maintained at a safe level. Traffic managers may set betsfould be used in the current conditions. Although moretinpu
MIT restrictions if they could consult an estimation of thdrom potential tool users is needed to determine how useful
MIT restrictions that should be put in place in the currenhis tool would be and how it could be improved, this paper
conditions. Previous research by Evans et al. modeled hpwoposes and evaluates algorithms that could be used inasuch
MIT restrictions are set and also the impact of MiT restaos tool. The probability values presented to the manager coelld
on flights [1]. The purpose of that MiT modeling was taomputed by a machine learning algorithm that takes as snput
enable simulations comparing MiT and “time-based metgringurrent air traffic demand, current weather conditionsyemnitr
an alternative congestion-management technique [2]. TiHe Mairport runway configurations, and other air traffic resimics
prediction model developed by Evans et al. uses a variety @frrently in use. In this research, four candidate algorih
rules based on current operations and a single-featurarlinéor this purpose will be compared.
regression to predict what MiT restrictions would be used Applications of machine learning to air traffic management
in a given situation. The quality of the Evans et al. MiTproblems such as runway configuration selection and Ground
prediction model was judged based on how well it prediclBelay Program rate selection are discussed in Section II.
average aircraft delays when coupled with a queuing-basBde problem objective, which is to minimize an expected

|I. INTRODUCTION



TABLE |

SAMPLE TOOL OUTPUT: SUGGESTEDMILES-IN-TRAIL . Pfeil and Balakrishnan apply machine learning algorithms
Miles-n-Trall | Probability like SVMs, ensembles of SVMs, decision trees, and random
No restriction 0.00 forests to the problem of predicting the likelihood that a
ig 8-2138 terminal-area route will be blocked by weather based on
20 0.10 features describing forecasted weather [11]. This infdiona
is then used to increase the number of available routes by
moving arrival and departure routes.
MiIT cost, is defined in Section Ill. In Section IV, the four IIl. PROBLEM OBJECTIVE

investigated algorithms are described and Section V dé&sus L _ . _—

the Newark Liberty International Airport arrival flow dataed The objecpve of this problem Is to minimize the expected
to analyze the algorithms. Implementation details suchoas cValue of @ MiT cost, assuming that the traffic manager selects
and algorithm parameter values are documented in Section W1 restrictions according to the probabilities presentsd
The results in Section VII describe how the algorithms prenfo Fhe tool (as in Tqble l). LeY” denote the possible MIT values;
with respect to the problem objective, as well as the regilts'" the ‘?Xamp'e in Table 1)" = {0, 10, 15’_2_0}' The current
some feature scoring and feature selection work. Finaliyes air traffic demand, current weather conditions, currerpair

possibilities for future work are described in Section \atid funway conditions, and other air traffic restrictions cathgin
conclusions are in Section 1X use are quantified im, an x 1 vector of features. The proposed

tool requires an algorithm that output$éy = |x) for each
[I. APPLICATIONS OFMACHINE LEARNING 7 € Y, the probability that MiT leve}; is the ideal MiT levely
TO AIR TRAFFIC MANAGEMENT in the current conditions. For exampj€y = 15|z) = 0.80 for

Machine learning has been applied to various probler%whse example in Table I. Algorithms learn how to estimate ¢hes

related to Ground Delay Programs (GDPs). Wolfe and Ri(l?mbalbIIItIeS frpm featureldataf ?y makmég “S?b."f a training
use similarity measures from machine learning and otheata set containing samples of features describing a iSifuat
() and a corresponding ideal MiT valué”. The ideal MiT

disciplines to find “relevant” historical days that might bé chieves the appropriate balance between safety and delay:
useful for traffic managers as they decide how to use GDFS ’

to manage congestion on a given day [3]. Work by Smith ar e lack of historical ideal MiT value data is discussed ih-su

Sherry attempts to assist traffic managers by using a Suppsoe}gion VA,

() 4 (1™ i i
Vector Machine (SVM) algorithm to predict future airport or a data Se{(I Y )}izl’ the expected MIT cost is
capacity from features that describe a weather forecasteat t m
airport [4], [5]. Wang considered a similar airport capgcit J=E Zc@y(i))]
prediction problem and found that ensemble bagging detisio i=1

trees out-performed SVMs [6]. Finally, Buxi and Hansen use m D (@)
a response surface methodology approach to produce a set of =33 ply = §laD)C(g,y"), (1)
possible airport capacity profiles with associated prdiegs i=lgey

from al wteathder foretca?t for a_? a|rpf(_)|rt [7].dThe forecaSWhereC(gj,y(i>) is the MiT cost when the MiTj is used and
were clustered, a set of capacily profiies and cofresSponapigy , yhe jgeal value of the MIT ig(). No MiT restriction is

probabilities were generated for each cluster, and these we . . . .
. . feated as if the MiT wer@, even though aircraft are required
then used for all days with forecasts that fell into the dust 6, 9 q

. . . . ...to remain5 miles apart at all times. This imposes additional
This set of capacity profiles and corresponding probagditi I ! P ! 'S IMmp H

. ; . =2 e enalties for cases when the ideal MiT is to have no restricti
served as inputs when solving a stochastic optlmlzatlob-prcg . o .
ut an MiT restriction is used and vice versa.

lem instance from [8] to determine how to set GDP parameters . .
. The MIT cost is
This approach performs better than an approach proposed by
Liu et al. that does not use weather forecasts but instead ¢y, () = Beaterfy™ — G+ + Bl — ¥ P4, (2)
clusters historical airport capacity profiles to generdte t
capacity profiles; profile probabilities were set equal te thwhere[a]; equalsa if « > 0 and equal®) otherwise. Here
historical frequencies in that work [9]. the first term is the safety cost amdarety is the cost per mile-
Machine learning algorithms have also been applied to tiretrail under the ideal MiT. Using too few MiT can lead to
problem of predicting airport runway configurations. Wangnsafe congestion. Similarly, the second term is the deday c
found that ensemble bagging decision tree models outpand Syelay i the cost per mile-in-trail above the ideal MiT.
formed SVMs when predicting runway configurations (just ddsing too many MiT imposes unnecessary delays on flights.
they did when predicting airport capacities) [6]. RamanujaTool users could tune the ratio of these parameters in ooder t
and Balakrishnan used historical data to tune a discrete&eh achieve an appropriate tradeoff between these safety dagl de
model that predicts runway configuration changes [10]. Thi®sts. Even different functional forms could be used for the
model also identifies the importance of factors in runwagost function, but only this simple form was studied in this
configuration decision-making. research. A sample MiIT cost is shown in Fig. 1.
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Fig. 1. Sample MiT cost whefsatety = 10, Bdelay = 1, and the ideal MiT

is 15. zml gey
:ZZ (@, y?) [1{y = §}hae(, z) (1 — ho(9,2))
IV. ALGORITHMS =1gey
A. Classification Algorithms _ . T ,
o . gy 22RO D oo )
SVM, decision tree, and random forest classification algo- 5 o7 2)
rithms were investigated for this problem. The SVM algo- ( ey exp(0, )

rithm was implemented with a radial basis function kemelyhere1{a} evaluates td whena is true and) whena is false.
Multi-class estimation is achieved with the “one-agaimse” This gradient can be used by a gradient descent algorithm
method, in whichk(k—1)/2 binary classifiers are built, one forto ypdates in a way that reduces the objective function. A

each pair of the: classes. If the tool required the estimatiogyradient descent update rule for th# update of6, is, for
of a single MIT value instead of estimates of probabilitiegachy € v,

that each possible value is ideal, the MiT value output by thi
SVM algorithm would be the one that is estimated most often Oylk + 1] := 0,y [k] — a[k] Ve, J(0[K]), (6)

when all of thesek(k — 1)/2 binary classifiers are run. Crossyherea(k] is a learning rate parameter that can vary with
validation is used to enable the SVM algorithm to outputideghe objective function is not convex, so a gradient descent

MIT value probabilities. algorithm may only converge to locally optimal values for
The decision tree split nodes by selecting the split for a V. D
. DATA

single feature that produces the highest information gatio r
No tree pruning techniques were used. The probability ofieac The flows selected for this study are those on the arrival
MIT value output by the decision tree is the fraction of eaciputes into Newark Liberty International Airport (EWR) fro
MIT value in the leaf corresponding to the feature data. THBe south over the ARD fix, from from the west over the
random forest algorithm consists of 100 decision treesdchi PENNS fix, and from the north over the SHAFF fix. These
with different bootstrap samples (random samples drawh witoutes are depicted in Fig. 2.
replacement from the training dataset) and in which the bestFor each of these flows, historical MiT value and feature
feature to split each node is selected from a random subfsetlata were parsed and loaded into a table with more than 44,000
the features. The probability of each MiT value is the averagows, one for every 5-minute interval in the summer months of
of the probabilities returned by each of the trees in thesoreMay—September, 2011. The MiT values were from a database
containing National Traffic Management Log (NTML) data.
B. Modified Softmax Regression and Stochastic Gradient Bgmije [15] points out that NTML data is not always accurate,
scent it was the only available source of historical MiT valueseTh
The classification algorithms described in sub-sectiomIV-distributions of MiT values for each fix are shown in Table II.
do not know the objective function for this problem, so iMany of the intervals are in periods of good weather or in
seems possible that an algorithm that explicitly reduces tthe middle of the night when there is low traffic volume.
objective function would perform better with respect to théccordingly, just over 5,000 of these 44,000 intervals (s
objective function. To investigate this possibility, a nfaatl 12% of them) have any MIT restriction for each fix. There
softmax regression algorithm was implemented and its parawere 3 or 4 possible MiT values for each fix, some used in
eters were tuned with gradient descent to explicitly redhiee less than 1% of the intervals and others used in as many as
expected MIT cost objective function. 10% of the intervals.
In this algorithm, the model fop(y = §|x) is parametrized The features used in this study were selected based on
by 6, which is made up of & x 1 vectoré, for eachy € Y. previous research (such as [1]) and discussions with adraffi



TABLE Il
FEATURES.

Feature Description

Data Source

Ceiling at EWR

Meteorological condition at EWR (“Instrument” or “Visual”

Visibility at EWR
Windspeed at EWR
Runway configuration at EWR

Ground Delay Program (GDP) planned in future at EWR

GDP in place at EWR

Planned remaining minutes of GDP at EWR
Duration of GDP so far at EWR

Airport rate for GDP at EWR

Ground Stop (GS) in place at EWR
Planned remaining minutes of GS at EWR
Duration of GS so far at EWR

Scheduled arrivals at EWR

Scheduled plus queued arrivals at EWR
Scheduled number of flights over ARD fix
Scheduled number of flights over PENNS fix
Scheduled number of flights over SHAFF fix

ASPM
ASPM
ASPM
ASPM
ASPM
NTML
NTML
NTML
NTML
NTML
NTML
NTML
NTML
ASPM
ASPM
ASDI

ASDI

ASDI
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Fig. 2.
configuration. Arrival routes into EWR are depicted withidojreen lines.

Arrival and departure routes for EWR for a

Departure routes out of EWR are dashed green lines.
and SHAFF fixes are circled. This figure was generated
visualizer” [14].
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TABLE I
DISTRIBUTIONS OFMIT VALUES.
Fix No restriction | MiT=10 | MiT=15 | MiT=20 | MiT=25
ARD 88.45% 0.20% 10.26% 0.96% 0.12%
PENNS 88.54% 0.33% 10.07% 1.06% 0.00%
SHAFF 87.75% 1.22% 9.10% 1.93% 0.00%

12 were continuous-valued and 6 were discrete or enumerated
Discretized versions of the continuous-valued featuresswe
created and added to the feature set to enable algorithmhs tha
require discrete features to make use of these featuredsmd a
to see if such features might be more useful to the algorithms
After the discretized versions of continuous-valued fesgu
were added, there were 30 featurespse 30 for the random
forest, SVM, and decision tree algorithms. The modified-soft
max algorithm could not use one enumerated feature (runway
configuration at EWR) and did not use the discretized feature
son = 17 for that algorithm. Table 11l shows the 18 features
and the data source for each feature. Data were acquired
from the FAA's Aviation System Performance Metrics (ASPM)
data, the National Traffic Management Log (NTML), and the
Aircraft Situational Display to Industry (ASDI). Flight ghs
from ASDI were simulated with an air traffic management
simulator (FACET) to determine the scheduled number of
flights at the fixes [16].

A. ldeal vs. Historical Miles-in-Trail

There is no record of the ideal MIiT value that achieves
the appropriate balance between safety and delay in each
time interval. Therefore, the algorithms were trained viita
historical MiT values. If these historical MiT values aretno
ideal, then any machine learning algorithm trained withnthe
will be biased accordingly.

Three actions that might help resolve this issue are discuss
here. With additional subject-matter expert input, it may b
possible to build a data set with MiT values that are closer to
ideal. A second resolution involves assuming that the tigsib

manager who sets MiT for traffic flows including those conMiT values are an unbiased noisy sample of the ideal MiT.
sidered in this study. The number of features used in thidystulf this is the case, we still may be able to achieve and even
was 18, although some algorithms required slightly diffiére guarantee good expected MiT cost performance with respect
sets of features. These features include current EWR weatteethe ideal MiT, given enough training data. A third and final
conditions, scheduled and queued arrival traffic demand rasolution would involve adjusting the objective functitm
EWR, scheduled traffic demand at each fix, the current EWRflect known problems with historical MiT restrictions. rFo
runway configuration, and data related to other traffic managexample, if historical MiT were typically overly restrigt,
ment initiatives currently in place at EWR. Of these feasurethe objective function could assume an ideal MiT of 5 miles



less than the historical MiT. Then the algorithm would learfarge reduction in the entropy of the MiT values, suggesting
to set MIT that are less restrictive than historical MiT. §hithat this feature might be useful for estimating MiT. Negati
topic should be investigated in future research. IG scores mean that conditioning on the value of a feature
actually increases the entropy in the MIT values, suggegstin
that knowing the value of this feature will not help when
For this studySsatety = 10 andfgeiay = 1, reflecting a higher estimating the MiT value.
cost for unsafe congestion than for unnecessary delays. Theable IV shows the IG for each feature for the estimation
shape of the MiT cost with these values for thgarameters of MIT at each fix. When the features are ranked by their IG
is shown in Fig. 1. Determining an appropriate value for th@r the SHAFF fix MiT (as they are in Table IV), features
ratio of these parameters is a topic for future research.  related to GDPs or GSs make up the top 4 features and 6
The Orange machine learning software package was use@fhe top 10 features. |G results for the other two fixes are
train and test these algorithms, except for the modifiedrsait similar. Features related to weather at EWR make up the other
regression algorithm [17]. For the SVM algorithm with theatures in the top 10 for the SHAFF fix. Features related to
radial basis function kernel, the kernel weighting par@metiraffic demand at EWR or at the fixes have relatively low 1G
v was set equal tat. The SVM was/;-regularized with a scores, which is surprising because these features wenel fou
weight C' = 1 on the regularization term. to be most useful for MiT prediction in previous research [1]
Custom code was developed to implement, train, and test therhe |G ranking of features is consistent with how an
modified softmax regression algorithm. Before running grad=AA employee who sets MiT for EWR and nearby airports
ent descent, the feature data were shuffled and normalizedjécribed the MiT selection process to us. A GDP or GS may
have zero mean and unit variance. The parameters were tupgdysed when severe congestion is expected at the airport.
with a stochastic gradient descent algorithm becauseastich According to this employee, if the congestion is severe ghou
gradient descent performed better than batch gradienedesgo require a GDP or GS, it also may necessitate MiT to
on this problem. The stochastic gradient descent update rfilrther reduce the demand from airborne flights, which are
for the k™ update of¢ is the same as in (6) except thahot impacted by GDPs or GSs. This could explain the high IG
Vo, J(0[k]) is computed with just a single data point insteadcores for features related to GDPs and GSs. Severe weather
of with the sum overn in (5). Various values for the learning|eads to reductions in airport capacity that are considetezh
rate parameter and the number of iterations through the dffer are set, so it is not surprising that weather-relatedi.fiess
were investigated and values that consistently performeltl Wwhave high IG scores. The low IG scores for demand-related
for this problem were used. The iteration in (6) was applii@atures are somewhat surprising, as scheduled demand was
until each data point was visited 5 times. The learning ragRscribed as relevant to MiT restriction decisions. The afesn
parameten|k] was set tos-o—. Techniques for improving features used in this model are not relative to capacityh suc

gradient descent, such as those described in [12] and [E8], nelative demand values may have higher IG scores.
lead to better results and could be studied in future rebearc
B. Learning Curves

_ Learning curves were generated for the algorithms to help
A. Feature Scoring understand their performance on this problem. To generate
We used information gain (IG), a measure of the expect#fiese curves, a randomly-selected 70% of the summer data
decrease of the entropy in the MIiT values when conditioningas used for training and the other 30% of the summer data
on each input feature, to score the discretized features. Tas used for testing. The algorithms were given larger and
IG for the j feature is computed as larger proportions of the training data set and then testetti®
test data set. Sample learning curves for the modified saftma
_ _ _ _ _ and decision tree algorithms when estimating the MiT for the
G =~ Zpy log py — Z Pe | ™ Zpy‘””logpy‘”” (1) SHAFF fix are shovx?n in Fig. 3. °
Although it achieves low expected MiT costs on the test data
where X is the set of possible values for th# feature,p, set, the decision tree algorithm suffers from high variaguze
is the frequency of MIT valuey in the data setp, is the “over-fitting”), as shown by the gap between training cosi an
frequency of the value: for the ;1 feature in the data set, test cost curves. This gap exists both when evaluating with
and p,|, is the frequency of MIiT valugy in entries in the the expected MiT cost and when evaluating with classificatio
data set where thg" feature takes the value. The entropy accuracy.
of the MIT values in the data (the first term in (7)) helps The training costs and test costs for the modified softmax
interpret the IG scores. The entropyig07, 0.406, and0.463 algorithm, on the other hand, are nearly identical once the
for the MIT values on the ARD, PENNS, and SHAFF fixesalgorithm has been trained on ju% of the training data
respectively. 1G scores quantify expected entropy deesgasset, indicating that it does not suffer from high variance.
so these entropy values provide an upper bound on IG scoféds low variance may be caused in part by the relatively
for each fix. Relatively large |G scores mean that conditigni small number of parameters that need to be tuned for this
on the value of a feature is expected to produce a relativeligorithm. With few parameters, it may be difficult or unlke

VI. IMPLEMENTATION DETAILS

VIl. RESULTS
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Expected MIiT Cost

Expected MIiT Cost

TABLE IV
FEATURE INFORMATION GAIN.

Feature Name ARD PENNS | SHAFF
Airport rate for GDP at EWR 0.290 0.277 0.272
Duration of GDP so far at EWR 0.210 0.164 0.210
GS in place at EWR 0.199 0.201 0.201
Duration of GS so far at EWR 0.211 0.213 0.197
Windspeed at EWR 0.199 0.197 0.195
Planned remaining minutes of GS at EWR 0.193 0.195 0.194
Ceiling at EWR 0.204 0.218 0.192
Visibility at EWR 0.185 0.174 0.172
Planned remaining minutes of GDP at EWR 0.181 0.167 0.170
Runway configuration at EWR 0.196 0.170 0.161
Scheduled arrivals at EWR 0.162 0.121 0.148
Scheduled plus queued arrivals at EWR 0.114 0.040 0.101
Meteorological condition at EWR (“Instrument” or “Visudl”"|  0.081 0.090 0.076
GDP in place at EWR 0.016 0.016 0.015
Scheduled number of flights over PENNS fix 0.014 0.001 0.005
Scheduled number of flights over SHAFF fix —0.005 | —0.014 | —0.015
GDP planned in future at EWR —0.027 | —0.027 | —0.027
Scheduled number of flights over ARD fix —0.062 | —0.063 | —0.062

15} =® - Training cost|]
== Testing cost
10t 8
o o
5 L 4
O i i i i
0 0.2 0.4 0.6 0.8 1
Proportion of Training Data
(a) Modified Softmax
15} =® - Training cost|]
== Testing cost
10t
5 L
O i i i i
0 0.2 0.4 0.6 0.8 1
Proportion of Training Data
(b) Decision Tree
Fig. 3. Learning curves for MiT estimation at the SHAFF fix.

that over-fitting will occur. The low variance may also be
caused in part by the custom gradient descent algorithm that
was developed to quickly tune the parameters on this type of
problem. The modified softmax algorithm incurs considgrabl
higher expected MiIT costs on the test data set than the decisi
tree algorithm, indicating that it suffers from high bias.

C. Feature Selection

We pursued forward search feature selection in an attempt
to resolve the variance problem for the decision tree aigiori
At each iteration of the feature selection process, theufeat
that led to the largest decrease in the expected MiT cost on a
test data set was added to the feature set. The featureieelect
stopped aftei5-19 of the 30 features were added to the set,
depending on the fix, because the expected MiT cost was no
longer decreasing with additional features.

Even though the forward search feature selection evaluated
feature sets based on the expected MiT cost, the decisien tre
made best use of the features with high information gainescor
(see Table IV). This is expected, as the information gaiio rat
used for splitting tree nodes is closely related to infoiorat
gain.

Ultimately, feature selection did not resolve the decision
tree’s high variance problem. Tree pruning techniques may
reduce its variance and should be studied in future worko Als
the variance issue may be resolved with a larger training dat
set.

D. Final Algorithm Evaluation

Finally, the four algorithms were evaluated by running 10-
fold cross validation with the summer data. In cross fold
validation, the available data are repeatedly broken irftere
ent training and testing data sets and the reported algorith
performance is the average of the performance across all the
testing data sets. These cross fold validation training and
testing data sets are a different way of making use of the
summer data than the 70%-30% split used to generate learning
curves in sub-section VII-B. The expected MIiT cost and



accuracy results for each fix resulting from this cross fol

. . . Il Delay cost
validation are in Table V and VI, respectively. 7 | | Ml safety cost
O
TABLE V E
EXPECTEDMIT COoSTCROSSVALIDATION RESULTS. o
Algorithm ARD | PENNS | SHAFF %
Random Forest 9.29 9.33 9.78 <
SVM 8.80 8.88 8.87 w
Modified Softmax | 8.09 8.11 8.54 0
Decision Tree 3.12 3.10 3.18 Random SVM Modified Decision
Forest Softmax Tree
Fig. 4. Expected MIT cost, broken into weighted delay an@tyatosts, for
TABLE VI estimations of MiT at the SHAFF fix.
ACCURACY CROSSVALIDATION RESULTS.
Algorithm ARD | PENNS | SHAFF
Random Forest | 0.946 | 0.946 | 0.940 over time to be useful? The cost function form and parameters
SVM 0.954 | 0.951 0.948 ; : ;
Modified Softmax | 0.826 | 0.813 | 0810 should also be set with trgfﬁc manager |npu_t. _
Decision Tree 0.968 | 0.968 0.966 Some features that traffic managers describe as important to

how they set MiT are still not in the data set, such as weather
forecasts, scheduled demand relative to expected capacdy
The tree algorithm achieves the lowest eXpeCted MiT C%fe time of the day, and a|gorithm performance may improve
and highest accuracy for each fix by a considerable margin,isQhese are considered. MiT restrictions for each of these
it seems to be the most promising algorithm for the proposgdes are primarily used to reduce congestion at EWR, so
MiIT decision Support tool. The modified softmax algorithnﬁ'nprovement may also be possib]e by estimating the MIT
achieves the next-best performance on the expected Midjues for these fixes simultaneously, as was done in [1].
cost, even with lower accuracies than the other algorithnsruning or a larger training data set may reduce the decision
It achieves low expected MiT cost and low accuracy becaugge algorithm’s high variance. Resolving the lack of iddél
it tends to estimate relatively high probabilities for hegh yajue data should be investigated. Further fine-tuning tigh
MIT values. Estimating too many MiT is much cheapefmprove the performance of the stochastic gradient descent
than estimating too few MIT becaus®atety > Sdelay in the  algorithm used for tuning the softmax regression paramaeter
expected MiT cost in (2). The modified softmax algorithn\ew algorithms such as neural networks could be considered,
can take advantage of that because it uses the gradiengd@ algorithms other than softmax regression may be modified
explicitly reduce the expected MIT cost. If the ratio of theg that they explicitly consider the expected MiT cost. @eili
p parameters were set differently or even if the cost functigfigorithms would allow the tool to update its behavior based
were changed to a completely different form, the parametiersnew data. Reinforcement learning algorithms could comside
the modified softmax algorithm would be adjusted accordingihe operational cost of changing MiT restrictions and respo
by the stochastic gradient descent parameter tuning. Tee otig traffic manager feedback. Finally, the algorithms shdgd

algorithms are not aware of the relative costs of variougsyptested in other regions of airspace and airports where MéT ar
of wrong estimations and so cannot take advantage of thegg(.

cost differences. Fig. 4 shows the weighted expected MiT
cost breakdown for each algorithm for the SHAFF fix. The IX. CONCLUSIONS

tendency of the modified softmax algorithm to avoid reldtive Miles-in-trail (MiT) restrictions help maintain safe airaf-

Of"l;%‘ volumes in airspace and at airports. A decision support
%ol that would output a probability that each of a set of
possible MiT values should be used in a particular situation
is proposed, and four algorithms that could be used in such
a tool were prototyped and evaluated. The algorithms were
There are many possible extensions for this work. Feedbamkaluated based on an expected MiT cost that can impose
from more traffic managers should be used to determinedifferent penalties for setting MIT too high or too low.
the proposed tool will be useful and whether or not thBasic Support Vector Machine, random forest, and decision
investigated algorithms are achieving acceptable pedane. tree classification algorithms were prototyped, and a saftm
For example, do managers prefer to see the probability ttegorithm was modified to explicitly reduce the expected MiT
each MIT value should be used in the current situationpst. The algorithms were evaluated with data collectethfro
or would a single determinstic suggestion be more useful®e summer of 2011 for flows of traffic bound to the Newark
Would suggestions for future MiT values be more useful thdrberty International Airport (EWR) over the ARD, PENNS,
estimates of the ideal MiT in the current situation? Do thend SHAFF fixes. From NTML, ASPM, and ASDI data, 18
probabilities suggested by the tool change too dramajicafeatures were computed for each 5-minute time intervaiduri

can be seen in the relatively large fraction of the total c
that is delay cost for the modified softmax algorithm.
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